A Model Based Approach for Gait Recognition System

نویسندگان

  • Mohamed Rafi
  • Hédi Khammari
  • Yasmeen Taj
چکیده

In this paper, we propose a model based approach for gait recognition using the mathematical theory of geometry and image processing techniques. In such approach, feature matrices used for gait recognition are constructed using segmentation, Hough transform and corner detection techniques. Indeed, it is possible to recognize a subject by analyzing the gait parameters extracted from his footsteps taken in different frames. In the preprocessing stage, the picture frames taken from video sequences are inputted to Canny Edge detection algorithm in order to detect the image edges and to reduce the noise by means of Gaussian filtering. The Hough transform is then applied to isolate the features of the preprocessing output and to get a gait model. The latter is used to extract the gait parameters, and the Harris Corner Detection technique is used to detect the corners and to generate the feature points. The gait parameters are measured by means of feature points and then stored in a gait database. Using a gait recognition interface the random subjects parameters are compared against a template set in the available database for recognition. In the proposed method, we have considered a database including ten subjects and a five parameters based gait recognition system. It is worth noting to remark that when the camera is placed at 90 and 270 degrees towards the subject, all the recognition parameters are clearly visible, measurable and lead to have more than 80% accuracy in recognition results. Keywords— Biometric, Gait recognition, Canny Edge Detection, Hough Transform, Harris Corner Detection

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review on Face and Gait Recognition: System, Data and Algorithms

This chapter reviews two important biometric recognition technologies that have received significant attention recently: face and gait recognition, where individuals are recognized by their faces and the way they walk, respectively. These two technologies are mainly motivated from security-related applications. We first describe typical face and gait recognition systems and three common recogni...

متن کامل

Model-based Gait Recognition

Model-based Gait Recognition concerns identification using an underlying mathematical construct(s) representing the discriminatory gait characteristics (be they static or dynamic), with a set of parameters and a set of logical and quantitative relationships between them. These models are often simplified based on justifiable assumptions such as the system only accounts for pathologically normal...

متن کامل

A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features

Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...

متن کامل

A Novel Gait Recognition System Based on Hidden Markov Models

The advances in computing power, availability of large-capacity storage devices and research in computer vision have contributed to recent developments in gait recognition. The ease of acquiring human videos by low cost equipments makes gait recognition much easier and less intrusive than other biometric systems. In this paper, a gait recognition system using a space-model-based approach is pro...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013